updates to code via mypy

main
Thamognya Kodi 2022-12-27 13:38:47 +07:00
parent 16aa8cea4a
commit 0ab358d6ce
7 changed files with 187 additions and 61 deletions

View File

@ -1,17 +1,36 @@
from typing import Any
from typing import Any, List, Tuple
import logging
import sys
from pathlib import Path
from transformers import pipeline
logging.basicConfig(
filename="QA.log",
filemode="w",
level=logging.INFO,
format="%(name)s - %(levelname)s - %(message)s",
)
sys.path.append(str(Path(__file__).parent.parent.parent) + "/tools/NLP/data")
sys.path.append(str(Path(__file__).parent.parent.parent) + "/utils")
import config
import internet
QA_MODEL = pipeline("question-answering")
QA_MODEL: Any = pipeline("question-answering")
def answer(query: str) -> Any:
def answer(query: str) -> tuple[Any, list[str]]:
global QA_MODEL
results = internet.google(query)
return (QA_MODEL(question=query, context=str(results[0])), results[1])
results: tuple[list[str], list[str]] = internet.google(query)
answer: tuple[Any, list[str]] = (
QA_MODEL(question=query, context=str(results[0])),
results[1],
)
if config.CONF_DEBUG:
logging.info(f"Answer: {answer}")
return answer
# def custom_answer

View File

@ -1,5 +1,6 @@
from typing import Any, List, Tuple
import logging
import os
import sys
from pathlib import Path
@ -7,6 +8,13 @@ from pathlib import Path
import dotenv
import requests
logging.basicConfig(
filename="internet.log",
filemode="w",
level=logging.INFO,
format="%(name)s - %(levelname)s - %(message)s",
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent) + "/utils/NLP")
sys.path.append(str(Path(__file__).parent.parent.parent.parent) + "/utils")
sys.path.append(str(Path(__file__).parent.parent))
@ -19,51 +27,76 @@ import re
import aiohttp
import config
from bs4 import BeautifulSoup
from is_relevant import filter_irrelevant
from normalize import normalizer
from relevancy import filter_irrelevant
from sentencize import sentencizer
from urlextract import URLExtract
dotenv.load_dotenv()
HTTP_USERAGENT: dict[str, str] = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
}
def google_urls(query: str, links: list[str]) -> list[str]:
# Send the request to the Google Search API
response = requests.get(
"https://www.googleapis.com/customsearch/v1",
params={
"key": config.GOOGLE_API_KEY,
"q": query,
"cx": config.GOOGLE_SEARCH_ENGINE_ID,
},
)
results = response.json()["items"]
# Print the search results
num_of_res: int = (
5 if config.CONF_MODE == "speed" else (20 if config.CONF_MODE else 10)
)
for result in results:
links.append(result["link"])
if len(links) == num_of_res:
break
return links
try:
# Send the request to the Google Search API
if config.GOOGLE_API_KEY == "":
exit("ERROR: Google API Key not found")
if config.GOOGLE_SEARCH_ENGINE_ID == "":
exit("ERROR: Google Search Engine Id not found")
response = requests.get(
"https://www.googleapis.com/customsearch/v1",
params={
"key": config.GOOGLE_API_KEY,
"q": query,
"cx": config.GOOGLE_SEARCH_ENGINE_ID,
},
)
results = response.json()["items"]
# Print the search results
num_of_res: int = (
5
if config.NLP_CONF_MODE == "speed"
else (20 if config.NLP_CONF_MODE else 10)
)
for result in results:
links.append(result["link"])
if len(links) == num_of_res:
break
if config.CONF_DEBUG:
logging.info(f"Links: {links}")
return links
except Exception:
if config.CONF_DEBUG:
logging.info(f"Error: {Exception}")
exit(
f"There is an unknown excpetion: {Exception}. Since no links are scraped, nothing futher can continue. Please report it at https://github.com/thamognya/internet_ml/issues or mail me at contact@thamognya.com"
)
async def fetch_url(session, url, question):
async with session.get(url, headers=HTTP_USERAGENT) as response:
html = await response.text()
soup = BeautifulSoup(html, "html.parser")
text = soup.get_text()
normalized_text = normalizer(text)
sentences = sentencizer(normalized_text)
return sentences
async def fetch_url(session: Any, url: str, question: Any) -> list[str]:
try:
async with session.get(url, headers=HTTP_USERAGENT) as response:
html = await response.text()
soup = BeautifulSoup(html, "html.parser")
text = soup.get_text()
normalized_text = normalizer(text)
sentences: list[str] = sentencizer(normalized_text)
if config.CONF_DEBUG:
logging.info(f"Sentences: {sentences}")
return sentences
except aiohttp.ClientConnectorError:
if config.CONF_DEBUG:
logging.info(f"ClientConnector Error: Likely a connection issue with wifi")
return [""]
except Exception:
return [""]
async def fetch_urls(urls, question):
async def fetch_urls(urls: list[str], question: str) -> Any:
async with aiohttp.ClientSession() as session:
tasks = [asyncio.create_task(fetch_url(session, url, question)) for url in urls]
results = await asyncio.gather(*tasks)
@ -74,7 +107,7 @@ def flatten(a: list[list[Any]]) -> list[Any]:
return list(itertools.chain(*a))
def get_url_contents(urls, question):
def get_url_contents(urls: list[str], question: str) -> list[str]:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
contents = loop.run_until_complete(fetch_urls(urls, question))
@ -82,15 +115,54 @@ def get_url_contents(urls, question):
return flatten(contents)
URL_EXTRACTOR = URLExtract()
URL_EXTRACTOR: URLExtract = URLExtract()
def google(query: str) -> tuple[list[str], list[str]]:
global URL_EXTRACTOR
# Hard coded exceptions - START
if "Thamognya" in query or "thamognya" in query:
return (["The smartest person in the world"], ["I decided it"])
if "modi" in query or "Modi" in query:
return (
["Prime Minister of India"],
[
"https://www.narendramodi.in/",
"https://en.wikipedia.org/wiki/Narendra_Modi",
"https://twitter.com/narendramodi?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor",
"https://www.instagram.com/narendramodi/?hl=en",
"https://www.facebook.com/narendramodi/",
"http://www.pmindia.gov.in/en/",
"https://timesofindia.indiatimes.com/topic/Narendra-Modi",
"https://www.britannica.com/biography/Narendra-Modi",
"https://indianexpress.com/article/india/zelenskky-dials-pm-modi-wishes-new-delhi-successful-g20-presidency-8345365/",
"https://economictimes.indiatimes.com/news/narendra-modi",
],
)
# Hard coded exceptions - END
links_in_text: list[str] = URL_EXTRACTOR.find_urls(query)
query = re.sub(r"\w+:\/{2}[\d\w-]+(\.[\d\w-]+)*(?:(?:\/[^\s/]*))*", "", query)
urls = google_urls(query, links_in_text)
content = get_url_contents(urls, query)
if config.CONF_DEBUG:
logging.info(f"Urls: {urls}")
logging.info(f"Content: {content}")
return (content, urls)
"""
Timing:
import time
start_time = time.time()
google("Who is Elon Musk")
print("--- %s seconds ---" % (time.time() - start_time))
# Results:
# --- 2.2230100631713867 seconds ---
# ________________________________________________________
# Executed in 4.73 secs fish external
# usr time 3.35 secs 85.00 micros 3.35 secs
# sys time 1.86 secs 956.00 micros 1.86 secs
"""

View File

@ -67,7 +67,7 @@ def normalizer(text: str) -> str:
.replace(" ", " ")
)
text = remove_non_ascii(text)
if config.NLP_CONF_DEBUG:
if config.CONF_DEBUG:
logging.info(text)
return text
@ -81,4 +81,6 @@ def normalize_sentences(sentences: list[str]) -> list[str]:
):
if future.result():
normalized_sentences.append(sentence)
if config.CONF_DEBUG:
logging.info(f"Normalized Sentences: {normalize_sentences}")
return normalized_sentences

View File

@ -1,6 +1,9 @@
from typing import Any
import concurrent.futures
import logging
import sys
from pathlib import Path
import nltk
import numpy as np
@ -12,6 +15,18 @@ from nltk.tokenize import word_tokenize
# from scipy.spatial.distance import jaccard
from sklearn.feature_extraction.text import TfidfVectorizer
sys.path.append(str(Path(__file__).parent.parent.parent.parent) + "/utils/NLP")
sys.path.append(str(Path(__file__).parent.parent.parent.parent) + "/utils")
import config
logging.basicConfig(
filename="relevancy.log",
filemode="w",
level=logging.INFO,
format="%(name)s - %(levelname)s - %(message)s",
)
nltk.download("punkt")
nltk.download("stopwords")
nltk.download("wordnet")
@ -64,10 +79,25 @@ def is_answer(sentence: str, question: str, threshold: float = 0.3) -> bool:
answer: bool
if main_verb is None:
answer = similarity >= threshold
return answer
else:
answer = main_verb in sentence_tokens and similarity >= threshold
return answer
if config.CONF_DEBUG:
logging.info(
f"Is Relevant -> Sentence: {sentence}, Question: {question} -> Relevancy: {answer}"
)
return answer
def filter_irrelevant(sentences: list[str], question: str) -> list[str]:
# Create a list to store the relevant sentences
relevant_sentences = []
for sentence in sentences:
if is_answer(sentence, question):
relevant_sentences.append(sentence)
print(sentence)
if config.CONF_DEBUG:
logging.info(f"Relevant Sentences: {relevant_sentences}")
return relevant_sentences
# # Test the is_answer function
@ -81,15 +111,15 @@ def is_answer(sentence: str, question: str, threshold: float = 0.3) -> bool:
# from concurrent.futures import ThreadPoolExecutor
# import concurrent.futures
def filter_irrelevant(sentences: list[str], question: str) -> list[str]:
# Create a list to store the relevant sentences
relevant_sentences = []
for sentence in sentences:
if is_answer(sentence, question):
relevant_sentences.append(sentence)
print(sentence)
return relevant_sentences
# print(filter_irrelevant_(["Neil Armstrong is an American Astronaut", "Neil Armstrong is dead", "Neil Armstrng is fake"], "Who is Neil Armstrong?"))
"""
print(
filter_irrelevant(
[
"Neil Armstrong is an American Astronaut",
"Neil Armstrong is dead",
"Neil Armstrng is fake",
],
"Who is Neil Armstrong?",
)
)
"""

View File

@ -1,4 +1,4 @@
from typing import List
from typing import Any, List
import logging
@ -26,7 +26,7 @@ try:
except LookupError:
nltk.download("words")
ENGLISH_WORDS = set(nltk.corpus.words.words())
ENGLISH_WORDS: Any = set(nltk.corpus.words.words())
def convert_to_english(text: str) -> str:
@ -54,7 +54,7 @@ def sentencizer(text: str) -> list[str]:
for future in concurrent.futures.as_completed(futures):
english_sentences.append(future.result())
if config.NLP_CONF_DEBUG:
if config.CONF_DEBUG:
logging.info(f"sentences: {english_sentences}")
return english_sentences

View File

@ -6,12 +6,11 @@ logging.basicConfig(
level=logging.INFO,
format="%(name)s - %(levelname)s - %(message)s",
)
# General
CONF_DEBUG: bool = True
# Google
GOOGLE_API_KEY: str = ""
GOOGLE_SEARCH_ENGINE_ID: str = ""
# Global
NLP_CONF_DEBUG: bool = True
# NLP
NLP_CONF_MODE: str = "default"
@ -20,13 +19,17 @@ def API_CONFIG(_GOOGLE_API_KEY: str = "", _GOOGLE_SEARCH_ENGINE_ID: str = "") ->
global GOOGLE_SEARCH_ENGINE_ID, GOOGLE_API_KEY
GOOGLE_API_KEY = _GOOGLE_API_KEY
GOOGLE_SEARCH_ENGINE_ID = _GOOGLE_SEARCH_ENGINE_ID
if CONF_DEBUG and _GOOGLE_API_KEY != "":
logging.info(f"API_KEY set")
if CONF_DEBUG and _GOOGLE_SEARCH_ENGINE_ID != "":
logging.info(f"SEARCH_ENGINE_ID set")
def NLP_config(mode: str = "default", debug: bool = True) -> None:
global conf_MODE, conf_DEBUG
NLP_CONF_DEBUG = debug
CONF_DEBUG = debug
if mode == "accuracy" or mode == "speed":
NLP_CONF_MODE = mode
else:
if NLP_CONF_DEBUG:
if CONF_DEBUG:
logging.warn(f"mode: {mode} does not exist")

View File

@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "internet_ml"
version = "0.1.2"
version = "0.1.3"
description = "Internet-ML: Allowing ML to connect to the internet"
readme = "./.github/README.md"
authors = ["Thamognya Kodi <contact@thamognya.com>"]